论文标题

评估网络表示以识别跨学科性

Assessing Network Representations for Identifying Interdisciplinarity

论文作者

Cunningham, Eoghan, Greene, Derek

论文摘要

许多研究试图将跨学科研究确定为文章或引用中确定的学科多样性的函数。但是,鉴于科学景观的不断发展,纪律界限正在变化和模糊,因此在严格的分类法中描述研究变得越来越困难。在这项工作中,我们探索了图形学习方法的潜力,以学习在引文网络中编码其“跨学科”的研究论文的嵌入式表示。这有助于识别跨学科研究,而无需使用学科类别。我们根据跨学科引用预测的效用,评估了这些表示及其识别跨学科研究的能力。我们发现,根据引文距离的多个定义,在引文图中保留结构对等的那些表示最好的跨学科相互作用。

Many studies have sought to identify interdisciplinary research as a function of the diversity of disciplines identified in an article's references or citations. However, given the constant evolution of the scientific landscape, disciplinary boundaries are shifting and blurring, making it increasingly difficult to describe research within a strict taxonomy. In this work, we explore the potential for graph learning methods to learn embedded representations for research papers that encode their 'interdisciplinarity' in a citation network. This facilitates the identification of interdisciplinary research without the use of disciplinary categories. We evaluate these representations and their ability to identify interdisciplinary research, according to their utility in interdisciplinary citation prediction. We find that those representations which preserve structural equivalence in the citation graph are best able to predict distant, interdisciplinary interactions in the network, according to multiple definitions of citation distance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源