论文标题

半监督对象检测的比例等效蒸馏

Scale-Equivalent Distillation for Semi-Supervised Object Detection

论文作者

Guo, Qiushan, Mu, Yao, Chen, Jianyu, Wang, Tianqi, Yu, Yizhou, Luo, Ping

论文摘要

最近的半监督对象检测(SS-OD)方法主要基于自我训练,即通过教师模型以无标记的数据作为监督信号生成硬伪标记。尽管他们取得了一定的成功,但有限的标记数据在半监督的学习中扩大了对象检测的挑战。我们分析了这些方法与经验实验结果所遇到的挑战。我们发现,大量的假阴性样本和劣等定位精度缺乏考虑。此外,物体大小和阶级失衡的较大差异(即背景和对象之间的极高比率)阻碍了先前的艺术的表现。此外,我们通过引入一种新颖的方法,比例等效的蒸馏(SED)来克服这些挑战,这是一个简单而有效的端到端知识蒸馏框架,可适应大对象大小方差和类不平衡。与以前的作品相比,SED具有一些吸引人的好处。 (1)SED实施一致性正规化以解决大规模差异问题。 (2)SED从假阴性样本中减轻了噪声问题,并降低了定位精度。 (3)重新加权策略可以隐式筛选未标记数据的潜在前景区域,以减少类不平衡的效果。广泛的实验表明,SED始终优于具有显着余量的不同数据集上最近最新的方法。例如,当使用5%和10%的MS-Coco标记数据时,它超过了10个地图。

Recent Semi-Supervised Object Detection (SS-OD) methods are mainly based on self-training, i.e., generating hard pseudo-labels by a teacher model on unlabeled data as supervisory signals. Although they achieved certain success, the limited labeled data in semi-supervised learning scales up the challenges of object detection. We analyze the challenges these methods meet with the empirical experiment results. We find that the massive False Negative samples and inferior localization precision lack consideration. Besides, the large variance of object sizes and class imbalance (i.e., the extreme ratio between background and object) hinder the performance of prior arts. Further, we overcome these challenges by introducing a novel approach, Scale-Equivalent Distillation (SED), which is a simple yet effective end-to-end knowledge distillation framework robust to large object size variance and class imbalance. SED has several appealing benefits compared to the previous works. (1) SED imposes a consistency regularization to handle the large scale variance problem. (2) SED alleviates the noise problem from the False Negative samples and inferior localization precision. (3) A re-weighting strategy can implicitly screen the potential foreground regions of the unlabeled data to reduce the effect of class imbalance. Extensive experiments show that SED consistently outperforms the recent state-of-the-art methods on different datasets with significant margins. For example, it surpasses the supervised counterpart by more than 10 mAP when using 5% and 10% labeled data on MS-COCO.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源