论文标题
量子临界点无限量子电路的有限深度缩放
Finite-depth scaling of infinite quantum circuits for quantum critical points
论文作者
论文摘要
在量子临界点处的纠缠熵的缩放使我们能够提取状态的普遍特性,例如,保形场理论的中心电荷。随着嘈杂的中间量子量子(NISQ)设备的快速改善,这些量子计算机是研究关键多体系统的强大工具。我们使用适合NISQ设备的有限深度量子电路作为差异ANSATZ来表示关键的无限系统的基态。我们找到了这些电路的通用有限深度缩放关系,并在两个不同的临界点上进行数值验证它们,即具有附加对称性的赋予术语和关键XXZ模型的临界ISING模型。
The scaling of the entanglement entropy at a quantum critical point allows us to extract universal properties of the state, e.g., the central charge of a conformal field theory. With the rapid improvement of noisy intermediate-scale quantum (NISQ) devices, these quantum computers present themselves as a powerful tool to study critical many-body systems. We use finite-depth quantum circuits suitable for NISQ devices as a variational ansatz to represent ground states of critical, infinite systems. We find universal finite-depth scaling relations for these circuits and verify them numerically at two different critical points, i.e., the critical Ising model with an additional symmetry-preserving term and the critical XXZ model.