论文标题

在大型强子对撞机II上刻画双重希格斯

Portraying Double Higgs at the Large Hadron Collider II

论文作者

Huang, Li, Kang, Su-beom, Kim, Jeong Han, Kong, Kyoungchul, Pi, Jun Seung

论文摘要

希格斯的潜力对于理解电子对称性破坏机制至关重要,并且可以说,探测希格斯的自我相互作用是当前和即将到来的对撞机实验的最重要的物理目标之一。特别是,通过将结果结合到多个通道中,可以在HL-LHC上访问三重HigGS耦合,这激发了研究双HIGGS生产的所有可能衰减模式。在本文中,我们在最终州的HL-LHC上重新审视了双$ B $标记的喷气式飞机,两个Leptons和缺少横向动量的双HL-LHC产量。我们专注于具有不同输入特征的各种神经网络体系结构的性能:低级(四个矩),高级(运动学变量)和基于图像。我们发现,通过仔细优化机器学习算法,可以充分利用新型的运动学变量,使信号灵敏度比现有结果略有增加。

The Higgs potential is vital to understand the electroweak symmetry breaking mechanism, and probing the Higgs self-interaction is arguably one of the most important physics targets at current and upcoming collider experiments. In particular, the triple Higgs coupling may be accessible at the HL-LHC by combining results in multiple channels, which motivates to study all possible decay modes for the double Higgs production. In this paper, we revisit the double Higgs production at the HL-LHC in the final state with two $b$-tagged jets, two leptons and missing transverse momentum. We focus on the performance of various neural network architectures with different input features: low-level (four momenta), high-level (kinematic variables) and image-based. We find it possible to bring a modest increase in the signal sensitivity over existing results via careful optimization of machine learning algorithms making a full use of novel kinematic variables.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源