论文标题
有效的二维无缺陷双物种原子阵列重排算法,具有接近最佳的原子移动
Efficient two-dimensional defect-free dual-species atom arrays rearrangement algorithm with near-fewest atom moves
论文作者
论文摘要
光镊中的双物种单原子阵列比单物质原子阵列具有多个优点,作为量子计算和量子模拟的平台。因此,创建具有数百多个原子编号的无缺陷双物种单原子数组是必不可少的。正如最近的实验所表明的那样,主要困难之一在于设计有效的算法以重新排列随机加载的双物种原子阵列中,以任意要求的配置。我们提出了一种启发式连通性优化算法(HCOA),以提供接近数量的原子移动。我们的算法介绍了在无向图中使用关节点的概念,以优化连接性作为安排原子移动路径的关键考虑。我们的算法以数百个原子和各种配置的阵列大小进行了测试,显示出很高的成功率(> 97%),低额外的原子移动比,良好的可伸缩性和灵活性。此外,我们提出了一个补充步骤,以解决重排期间原子损失问题。
Dual-species single-atom array in optical tweezers has several advantages over the single-species atom array as a platform for quantum computing and quantum simulation. Thus, creating the defect-free dual-species single-atom array with atom numbers over hundreds is essential. As recent experiments demonstrated, one of the main difficulties lies in designing an efficient algorithm to rearrange the stochastically loaded dual-species atoms arrays into arbitrary demanded configurations. We propose a heuristic connectivity optimization algorithm (HCOA) to provide the near-fewest number of atom moves. Our algorithm introduces the concept of using articulation points in an undirected graph to optimize connectivity as a critical consideration for arranging the atom moving paths. Tested in array size of hundreds atoms and various configurations, our algorithm shows a high success rate (> 97%), low extra atom moves ratio, good scalability, and flexibility. Furthermore, we proposed a complementary step to solve the problem of atom loss during the rearrangement.