论文标题

BEM中3D潜在问题的等距奇异性提取技术

Isoparametric singularity extraction technique for 3D potential problems in BEM

论文作者

Kanduc, Tadej

论文摘要

为了解决平滑弯曲3D几何形状上的搭配边界元素方法(BEM)解决潜在问题的边界积分方程,采用了一种分析奇异性提取技术。通过采用等矩阵方法,考虑了由参数域代表的曲线或三角形表示的弯曲几何形状。可以作为减法或分裂的操作执行管理奇异积分的奇异性提取,每种都有一些优势。研究了有关源点的奇异内核的特定系列扩展。固有坐标中的系列由类型的$ r^p x^q y^r $组成,其中$ r $是二次双变量均质多项式的平方根,对应于平滑表面的第一种基本形式,$ p,q,q,r $是整数,满足$ p $ p \ leq leq leq -leq -1 $ queq -eq -1 $ q -1 $ q -1 $ q,r q,r $ qe,r qe,r $ q,r $。通过从单数内核的系列扩展中提取更多项,可以增加源点正则化内核的平滑度。使用复发公式,并通过在矩形或三角参数域的边缘进行评估,从$ r^p x^q y^r $的抗体剂中获得了此类术语积分的分析公式。数值测试表明,奇异性提取技术可能是数值正交方案的有用先决条件,可以获得对3D搭配BEM中奇异积分的准确评估。

To solve boundary integral equations for potential problems using collocation Boundary Element Method (BEM) on smooth curved 3D geometries, an analytical singularity extraction technique is employed. By adopting the isoparametric approach, curved geometries that are represented by mapped rectangles or triangles from the parametric domain are considered. The singularity extraction on the governing singular integrals can be performed either as an operation of subtraction or division, each having some advantages. A particular series expansion of a singular kernel about a source point is investigated. The series in the intrinsic coordinates consists of functions of a type $R^p x^q y^r$, where $R$ is a square root of a quadratic bivariate homogeneous polynomial, corresponding to the first fundamental form of a smooth surface, and $p,q,r$ are integers, satisfying $p\leq -1$ and $q,r \geq 0$. By extracting more terms from the series expansion of the singular kernel, the smoothness of the regularized kernel at the source point can be increased. Analytical formulae for integrals of such terms are obtained from antiderivatives of $R^p x^q y^r$, using recurrence formulae, and by evaluating them at the edges of rectangular or triangular parametric domains. Numerical tests demonstrate that the singularity extraction technique can be a useful prerequisite for a numerical quadrature scheme to obtain accurate evaluations of the governing singular integrals in 3D collocation BEM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源