论文标题

Sweinet:超声剪切波弹性成像的基于深度学习的不确定性定量

SweiNet: Deep Learning Based Uncertainty Quantification for Ultrasound Shear Wave Elasticity Imaging

论文作者

Jin, Felix Q., Carlson, Lindsey C., Feltovich, Helen, Hall, Timothy J., Palmeri, Mark L.

论文摘要

在超声剪切波弹性(SWE)成像中,存在许多算法,用于从时空位移数据估算剪切波速度(SWS)。但是,没有方法提供了良好的且实用的不确定性度量,这阻碍了SWE在下游决策中的临床采用和实用性。在这里,我们设计了一个深度学习的SWS估计器,该估计值同时为每个估计值输出一个定量且良好的不确定性值。我们的深神经网络(DNN)将轨道位移数据的单个2D时空平面作为输入,并输出两个参数$ m $ $ m $和$σ$的对数正态概率分布。为了进行培训和测试,我们使用了从30名怀孕受试者收集的子宫颈的体内2D-SWE数据,总计551次收购和200万个时空图。通过不确定性将点分组为箱以评估不确定性校准:预测的不确定性与根平方估计误差非常匹配,平均绝对百分比偏差为3.84%。我们创建了一个剩余的合奏模型,该模型估计的不确定性具有更好的校准(1.45%),而不是在被保留患者的数据上进行的任何单个合奏成员。最后,我们将DNN应用于外部数据集以评估其概括性。我们已经公开使用了训练有素的模型Sweinet,以向研究社区提供快速的SWS估计器,该估计值还对预测不确定性进行了良好的估计。

In ultrasound shear wave elasticity (SWE) imaging, a number of algorithms exist for estimating the shear wave speed (SWS) from spatiotemporal displacement data. However, no method provides a well-calibrated and practical uncertainty metric, hindering SWE's clinical adoption and utility in downstream decision-making. Here, we designed a deep learning SWS estimator that simultaneously outputs a quantitative and well-calibrated uncertainty value for each estimate. Our deep neural network (DNN) takes as input a single 2D spatiotemporal plane of tracked displacement data and outputs the two parameters $m$ and $σ$ of a log-normal probability distribution. For training and testing, we used in vivo 2D-SWE data of the cervix collected from 30 pregnant subjects, totaling 551 acquisitions and >2 million space-time plots. Points were grouped by uncertainty into bins to assess uncertainty calibration: the predicted uncertainty closely matched the root-mean-square estimation error, with an average absolute percent deviation of 3.84%. We created a leave-one-out ensemble model that estimated uncertainty with better calibration (1.45%) than any individual ensemble member on a held-out patient's data. Lastly, we applied the DNN to an external dataset to evaluate its generalizability. We have made the trained model, SweiNet, openly available to provide the research community with a fast SWS estimator that also outputs a well-calibrated estimate of the predictive uncertainty.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源