论文标题

通过自我监督学习,推断图案形成过程中的拓扑过渡

Inferring topological transitions in pattern-forming processes with self-supervised learning

论文作者

Abram, Marcin, Burghardt, Keith, Steeg, Greg Ver, Galstyan, Aram, Dingreville, Remi

论文摘要

模式形成过程中拓扑和微观结构方案中过渡的识别和分类对于理解和制造许多应用领域中的微观结构精确的新型材料至关重要。不幸的是,相关的微观结构过渡可能取决于以微妙而复杂的方式取决于过程参数,而经典相变理论未捕获。尽管有监督的机器学习方法可能对识别过渡制度很有用,但他们需要标签,这些标签需要先验了解订单参数或描述这些过渡的相关结构。在动态系统的通用原理的推动下,我们使用一种自我监督的方法来解决使用神经网络从观察到的微观结构中预测过程参数的反问题。这种方法不需要关于不同类别的微观结构模式或预测微观结构跃迁的目标任务的预定义的,标记的数据。我们表明,执行逆问题预测任务的困难与发现微观结构制度的目标有关,因为微观结构模式的定性变化与我们自我监督问题的不确定性预测的变化相对应。我们通过在两个不同的模式形成过程中自动发现微观结构状态的过渡来证明我们的方法的价值:两相混合物的旋缺座分解以及在薄膜物理蒸气沉积过程中二进制合金浓度调制的形成。这种方法为发现和理解看不见或难以辨认的过渡制度开辟了一个有希望的途径,并最终用于控制复杂的模式形成过程。

The identification and classification of transitions in topological and microstructural regimes in pattern-forming processes are critical for understanding and fabricating microstructurally precise novel materials in many application domains. Unfortunately, relevant microstructure transitions may depend on process parameters in subtle and complex ways that are not captured by the classic theory of phase transition. While supervised machine learning methods may be useful for identifying transition regimes, they need labels which require prior knowledge of order parameters or relevant structures describing these transitions. Motivated by the universality principle for dynamical systems, we instead use a self-supervised approach to solve the inverse problem of predicting process parameters from observed microstructures using neural networks. This approach does not require predefined, labeled data about the different classes of microstructural patterns or about the target task of predicting microstructure transitions. We show that the difficulty of performing the inverse-problem prediction task is related to the goal of discovering microstructure regimes, because qualitative changes in microstructural patterns correspond to changes in uncertainty predictions for our self-supervised problem. We demonstrate the value of our approach by automatically discovering transitions in microstructural regimes in two distinct pattern-forming processes: the spinodal decomposition of a two-phase mixture and the formation of concentration modulations of binary alloys during physical vapor deposition of thin films. This approach opens a promising path forward for discovering and understanding unseen or hard-to-discern transition regimes, and ultimately for controlling complex pattern-forming processes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源