论文标题

关于贝克的分区统计数据的陈莫·osburn的某些猜想的证明

Proofs of some conjectures of Chan-Mao-Osburn on Beck's partition statistics

论文作者

Jin, Liuxin, Liu, Eric H., Xia, Ernest X. W.

论文摘要

最近,乔治·贝克(George Beck)介绍了两个分区统计$ nt(m,j,n)$和$m_Ω(m,j,n)$,它表示$ n $的分区中的零件总数,以及与$ m $ modulo $ j $一致的等级,以及与$ n $ $ $ moduloent的分配中的零件总数。安德鲁斯(Andrews)证明了由贝克(Beck)猜想的$ NT(M,5,N)$的一致性。最近,Chan,Mao和Osburn建立了许多Andrews-Beck类型的一致性,并提出了一些涉及$ NT(M,J,N)$和$M_Ω(M,J,N)$的猜想。其中一些猜想是由Chern和Mao证明的。在本文中,我们确认了陈-Mao-osburn的其余三个猜想,以及由于毛泽东而引起的两个猜想。我们还提出了$m_Ω(m,j,n)$和$ nt(m,j,n)$的两个新猜想。

Recently, George Beck introduced two partition statistics $NT(m,j,n)$ and $M_ω(m,j,n)$, which denote the total number of parts in the partition of $n$ with rank congruent to $m$ modulo $j$ and the total number of ones in the partition of $n$ with crank congruent to $m$ modulo $j$, respectively. Andrews proved a congruence on $NT(m,5,n)$ which was conjectured by Beck. Very recently, Chan, Mao and Osburn established a number of Andrews-Beck type congruences and posed several conjectures involving $NT(m,j,n)$ and $M_ω(m,j,n)$. Some of those conjectures were proved by Chern and Mao. In this paper, we confirm the remainder three conjectures of Chan-Mao-Osburn and two conjectures due to Mao. We also present two new conjectures on $M_ω(m,j,n)$ and $NT(m,j,n)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源