论文标题
模块化的贝叶斯分析和削减无似然推理的反馈
Modularized Bayesian analyses and cutting feedback in likelihood-free inference
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
There has been much recent interest in modifying Bayesian inference for misspecified models so that it is useful for specific purposes. One popular modified Bayesian inference method is "cutting feedback" which can be used when the model consists of a number of coupled modules, with only some of the modules being misspecified. Cutting feedback methods represent the full posterior distribution in terms of conditional and sequential components, and then modify some terms in such a representation based on the modular structure for specification or computation of a modified posterior distribution. The main goal of this is to avoid contamination of inferences for parameters of interest by misspecified modules. Computation for cut posterior distributions is challenging, and here we consider cutting feedback for likelihood-free inference based on Gaussian mixture approximations to the joint distribution of parameters and data summary statistics. We exploit the fact that marginal and conditional distributions of a Gaussian mixture are Gaussian mixtures to give explicit approximations to marginal or conditional posterior distributions so that we can easily approximate cut posterior analyses. The mixture approach allows repeated approximation of posterior distributions for different data based on a single mixture fit, which is important for model checks which aid in the decision of whether to "cut". A semi-modular approach to likelihood-free inference where feedback is partially cut is also developed. The benefits of the method are illustrated in two challenging examples, a collective cell spreading model and a continuous time model for asset returns with jumps.