论文标题

Tensorf:张力辐射场

TensoRF: Tensorial Radiance Fields

论文作者

Chen, Anpei, Xu, Zexiang, Geiger, Andreas, Yu, Jingyi, Su, Hao

论文摘要

我们提出了Tensorf,这是一种新颖的方法,用于建模和重建辐射场。与纯粹使用MLP的NERF不同,我们将场景的辐射字段建模为4D张量,该张量代表具有每个体素多通道特征的3D素素网格。我们的核心思想是将4D场景张量分解为多个紧凑的低级张量组件。我们证明,在我们的框架中,应用传统的CP分解(将张量分配到具有紧凑矢量的排名一组分中)会导致对香草Nerf的改进。为了进一步提高性能,我们引入了一种新型的矢量 - 马trix(VM)分解,该分解放大了张量的两种模式的低级别约束,并将张量分配到紧凑型矢量和矩阵因子中。除了出色的渲染质量之外,我们具有CP和VM分解的模型与以前的和并发的作品相比,可显着降低记忆足迹,这些作品直接优化了人voxel特征。在实验上,我们证明,与NERF相比,具有CP分解的Tensorf具有更高的渲染质量,甚至更小的型号大小(<4 MB),可以实现快速重建(<30分钟)。此外,带有VM分解的Tensorf进一步提高了质量并优于先前的最先进方法,同时减少重建时间(<10分钟)并保持紧凑的模型大小(<75 MB)。

We present TensoRF, a novel approach to model and reconstruct radiance fields. Unlike NeRF that purely uses MLPs, we model the radiance field of a scene as a 4D tensor, which represents a 3D voxel grid with per-voxel multi-channel features. Our central idea is to factorize the 4D scene tensor into multiple compact low-rank tensor components. We demonstrate that applying traditional CP decomposition -- that factorizes tensors into rank-one components with compact vectors -- in our framework leads to improvements over vanilla NeRF. To further boost performance, we introduce a novel vector-matrix (VM) decomposition that relaxes the low-rank constraints for two modes of a tensor and factorizes tensors into compact vector and matrix factors. Beyond superior rendering quality, our models with CP and VM decompositions lead to a significantly lower memory footprint in comparison to previous and concurrent works that directly optimize per-voxel features. Experimentally, we demonstrate that TensoRF with CP decomposition achieves fast reconstruction (<30 min) with better rendering quality and even a smaller model size (<4 MB) compared to NeRF. Moreover, TensoRF with VM decomposition further boosts rendering quality and outperforms previous state-of-the-art methods, while reducing the reconstruction time (<10 min) and retaining a compact model size (<75 MB).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源