论文标题

通过沟通对多代理深入学习学习的调查

A Survey of Multi-Agent Deep Reinforcement Learning with Communication

论文作者

Zhu, Changxi, Dastani, Mehdi, Wang, Shihan

论文摘要

沟通是协调多个代理,扩大对环境的看法并支持其协作的有效机制。在多代理深度强化学习(MADRL)的领域,代理可以提高整体学习绩效并通过沟通来实现其目标。代理可以将各种类型的消息传达给所有代理商或特定代理人组,或以特定的约束为条件。随着MADRL与交流(COMM-MADRL)的研究工作不断增长,缺乏一种系统和结构性的方法来区分和分类现有的Comm-Madrl方法。在本文中,我们调查了Comm-Madrl领域的最新作品,并考虑了可以在设计和开发多机构增强学习系统中发挥作用的沟通的各个方面。考虑到这些方面,我们提出了9个维度,可以分析,开发和比较Comm-Madrl方法。通过将现有作品投射到多维空间中,我们发现了有趣的趋势。我们还提出了一些新颖的方向,用于通过探索尺寸的可能组合来设计未来的通信系统。

Communication is an effective mechanism for coordinating the behaviors of multiple agents, broadening their views of the environment, and to support their collaborations. In the field of multi-agent deep reinforcement learning (MADRL), agents can improve the overall learning performance and achieve their objectives by communication. Agents can communicate various types of messages, either to all agents or to specific agent groups, or conditioned on specific constraints. With the growing body of research work in MADRL with communication (Comm-MADRL), there is a lack of a systematic and structural approach to distinguish and classify existing Comm-MADRL approaches. In this paper, we survey recent works in the Comm-MADRL field and consider various aspects of communication that can play a role in designing and developing multi-agent reinforcement learning systems. With these aspects in mind, we propose 9 dimensions along which Comm-MADRL approaches can be analyzed, developed, and compared. By projecting existing works into the multi-dimensional space, we discover interesting trends. We also propose some novel directions for designing future Comm-MADRL systems through exploring possible combinations of the dimensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源