论文标题

欧洲散布源中微子超级光束

The European Spallation Source neutrino Super Beam

论文作者

Alekou, A., Baussan, E., Kraljevic, N. Blaskovic, Blennow, M., Bogomilov, M., Bouquerel, E., Burgman, A., Carlile, C. J., Cederkall, J., Christiansen, P., Collins, M., Morales, E. Cristaldo, Cupial, P., Alessi, L. D, Danared, H., de Andre, J. P. A. M., Delahaye, J. P., Dracos, M., Efthymiopoulos, I., Ekelof, T., Eshraqi, M., Fanourakis, G., Fernandez-Martinez, E., Folsom, B., Gazis, N., Geralis, Th., Ghosh, M., Gokbulut, G., Halic, L., Topaksu, A. Kayis, Kildetoft, B., Klicek, B., Koziol, M., Krhac, K., Lacny, L., Lindroos, M., Mezzetto, M., Oglakci, M., Ohlsson, T., Olvegard, M., Ota, T., Park, J., Patrzalek, D., Petkov, G., Poussot, P., Johansson, R., Rosauro-Alcaraz, S., Szybinski, B., Snamina, J., Stavropoulos, G., Stipcevic, M., Terranova, F., Thomas, J., Tolba, T., Trachanas, E., Tsenov, R., Vankova-Kirilova, G., Vassilopoulos, N., Wildner, E., Wurtz, J., Zormpa, O., Zou, Y.

论文摘要

在这张雪人2021年白皮书中,我们总结了欧洲散布源中微子超级光束(ESSVSB)实验的概念设计及其与可能未来MUON可能基于MUON的设施的协同作用,例如低能量的nustorm和Muon对撞机。 ESSVSB将受益于隆德 - 瑞典的欧洲Linac(ESS)Linac的高力量,5 MW,以生产世界上最激烈的中微子束,从而在第二振荡的最大振荡下进行测量。假设有十年的暴露,物理模拟表明,可以在所有Delta CP的所有值的70%以上建立CP违规行为,其显着性为5 Sigma,并且在所有值的Delta CP的测量值中,Delta CP的测量值均小于8度。 但是,在实现最终的技术设计之前,必须进一步研究一些技术和物理挑战。在第二振荡下测量最大的测量需要具有适当能量的非常强烈的中微子束。为此,旨在生产世界上最激烈的中子束的ESS质子束Linac将需要升级到10 MW功率,2.5 GEV能量和28 Hz Beam脉冲重复速率。将ESS Linac Beam脉冲从2.86 ms到1.3 mus压缩需要累加环。将需要一个高功率目标站设备来产生专注的激烈(超级)Mu-neutrino束。该中微子超级束的物理性能与巨阳下水水Cherenkov Neutmino远处检测器一起安装在距离基线的ESS的距离为360 km或540 km的距离。

In this Snowmass 2021 white paper, we summarise the Conceptual Design of the European Spallation Source neutrino Super Beam (ESSvSB) experiment and its synergies with the possible future muon based facilities, e.g. a Low Energy nuSTORM and the Muon Collider. The ESSvSB will benefit from the high power, 5 MW, of the European Spallation Source (ESS) LINAC in Lund-Sweden to produce the world most intense neutrino beam, enabling measurements to be made at the second oscillation maximum. Assuming a ten-year exposure, physics simulations show that the CP-invariance violation can be established with a significance of 5 sigma over more than 70% of all values of delta CP and with an error in the measurement of the delta CP angle of less than 8 degree for all values of delta CP. However, several technological and physics challenges must be further studied before achieving a final Technical Design. Measuring at the 2nd oscillation maximum necessitates a very intense neutrino beam with the appropriate energy. For this, the ESS proton beam LINAC, which is designed to produce the world's most intense neutron beam, will need to be upgraded to 10 MW power, 2.5 GeV energy and 28 Hz beam pulse repetition rate. An accumulator ring will be required for the compression of the ESS LINAC beam pulse from 2.86 ms to 1.3 mus. A high power target station facility will be needed to produce a well-focused intense (super) mu-neutrino beam. The physics performance of that neutrino Super Beam in conjunction with a megaton underground Water Cherenkov neutrino far detector installed at a distance of either 360 km or 540 km from the ESS, the baseline, has been evaluated.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源