论文标题

一般量子测量下的固有随机性

Intrinsic randomness under general quantum measurements

论文作者

Dai, Hao, Chen, Boyang, Zhang, Xingjian, Ma, Xiongfeng

论文摘要

量子测量可能会产生不确定性原理引起的随机性。当用von Neumann测量值测量状态时,可以通过测量基础来量化状态相干性来量化固有的随机性。与投影测量值不同,用于通用测量的设备中还有额外的和可能隐藏的自由度。我们提出了一种以任意输入状态的一般测量的对手方案,基于该状态,我们表征了固有的随机性。有趣的是,我们发现,在某些测量值(例如对称和信息完整测量)下,所有状态都有非零的随机性,激发了无源无关的随机数发生器而没有状态表征的新设计。此外,我们的结果表明,固有的随机性可以量化一般测量结果,从而概括了国家一致性的标准资源理论。

Quantum measurements can produce randomness arising from the uncertainty principle. When measuring a state with von Neumann measurements, the intrinsic randomness can be quantified by the quantum coherence of the state on the measurement basis. Unlike projection measurements, there are additional and possibly hidden degrees of freedom in apparatus for generic measurements. We propose an adversary scenario for general measurements with arbitrary input states, based on which, we characterize the intrinsic randomness. Interestingly, we discover that under certain measurements, such as the symmetric and information-complete measurement, all states have nonzero randomness, inspiring a new design of source-independent random number generators without state characterization. Furthermore, our results show that intrinsic randomness can quantify coherence under general measurements, which generalizes the result in the standard resource theory of state coherence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源