论文标题
从近代到领先阶的稳定性分析中确切的三智度点
Exact tricritical point from next-to-leading-order stability analysis
论文作者
论文摘要
在巨大的手性毛刺模型中,一个相边界将同质性与不均匀相分开。它由两个部分,二阶线和一条第一阶线组成,在三智度点上也是如此。一阶相边界需要进行完整的数值hartree-fock计算,而二阶相边界可以通过扰动稳定性分析来精确确定,并减少努力。我们将这种稳定性分析扩展到高阶扰动理论。这使我们能够精确地定位三级点,而无需执行Hartree-Fock计算。由于许多人体理论中建立的良好工具,可以处理由于光谱差距的出现而导致的分歧。
In the massive chiral Gross-Neveu model, a phase boundary separates a homogeneous from an inhomogeneous phase. It consists of two parts, a second order line and a first order line, joined at a tricritical point. Whereas the first order phase boundary requires a full, numerical Hartree-Fock calculation, the second order phase boundary can be determined exactly and with less effort by a perturbative stability analysis. We extend this stability analysis to higher order perturbation theory. This enables us to locate the tricritical point exactly, without need to perform a Hartree-Fock calculation. Divergencies due to the emergence of spectral gaps in a spatially periodic perturbation are handled using well established tools from many body theory.