论文标题
部分可观测时空混沌系统的无模型预测
DiFT: Differentiable Differential Feature Transform for Multi-View Stereo
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We present a novel framework to automatically learn to transform the differential cues from a stack of images densely captured with a rotational motion into spatially discriminative and view-invariant per-pixel features at each view. These low-level features can be directly fed to any existing multi-view stereo technique for enhanced 3D reconstruction. The lighting condition during acquisition can also be jointly optimized in a differentiable fashion. We sample from a dozen of pre-scanned objects with a wide variety of geometry and reflectance to synthesize a large amount of high-quality training data. The effectiveness of our features is demonstrated on a number of challenging objects acquired with a lightstage, comparing favorably with state-of-the-art techniques. Finally, we explore additional applications of geometric detail visualization and computational stylization of complex appearance.