论文标题
$ l^p $解决方案的高阶衍生物衰减Korteweg类型的可压缩流体模型
Decay of higher order derivatives for $L^p$ solutions to the compressible fluid model of Korteweg type
论文作者
论文摘要
我们提出了一个新的推导,用于\ textit {intunary}的最佳衰减,用于$ l^p $ solutions for Korteweg类型的可压缩流体模型的高阶衍生物。基于Gevrey估计,这种方法是在负面的范围内建立溶液半径的生长统一的界限。为此,涉及加热内核和非标准产品BESOV估计值的最大规律性属性良好。我们的方法部分受到Oliver-Titi的作品的启发,适用于广泛的耗散系统。
We present a new derivation for the optimal decay of \textit{arbitrary} higher order derivatives for $L^p$ solutions to the compressible fluid model of Korteweg type. This approach, based on Gevrey estimates, is to establish uniform bounds on the growth of the radius of analyticity of the solution in negative Besov norms. For that end, the maximal regularity property involving Gevrey multiplier of heat kernel and non standard product Besov estimates are well developed. Our approach is partly inspired by Oliver-Titi's work and is applicable to a wide range of dissipative systems.