论文标题
自适应内核卡尔曼过滤器
Adaptive Kernel Kalman Filter
论文作者
论文摘要
非线性动态系统中的顺序贝叶斯过滤器需要对预测性和后验分布进行递归估计。本文介绍了一个称为自适应核Kalman滤波器(AKKF)的贝叶斯过滤器。使用此过滤器,使用重现内核Hilbert Space(RKHSS)中的经验内核平均嵌入(KME)近似隐藏状态的任意预测和后验分布。与KME并行,数据空间中的某些粒子用于捕获动态系统模型的属性。具体而言,在数据空间中生成和更新粒子,而与粒子的特征映射相关的相应内核重量均值向量和协方差矩阵进行了预测并根据内核Kalman规则(KKR)在RKHSS中进行了更新。提出了仿真结果,以通过与无味的卡尔曼滤波器(UKF),粒子滤光片(PF)和高斯粒子滤光片(GPF)进行比较,以明显降低粒子数来确认我们的方法的性能。例如,与GPF相比,建议的方法在使用50个粒子时,提出的方法可提供约5%的对数均方根误差(LMSE)跟踪性能改善(BOT)系统的性能。
Sequential Bayesian filters in non-linear dynamic systems require the recursive estimation of the predictive and posterior distributions. This paper introduces a Bayesian filter called the adaptive kernel Kalman filter (AKKF). With this filter, the arbitrary predictive and posterior distributions of hidden states are approximated using the empirical kernel mean embeddings (KMEs) in reproducing kernel Hilbert spaces (RKHSs). In parallel with the KMEs, some particles, in the data space, are used to capture the properties of the dynamical system model. Specifically, particles are generated and updated in the data space, while the corresponding kernel weight mean vector and covariance matrix associated with the feature mappings of the particles are predicted and updated in the RKHSs based on the kernel Kalman rule (KKR). Simulation results are presented to confirm the improved performance of our approach with significantly reduced particle numbers, by comparing with the unscented Kalman filter (UKF), particle filter (PF) and Gaussian particle filter (GPF). For example, compared with the GPF, the proposed approach provides around 5% logarithmic mean square error (LMSE) tracking performance improvement in the bearing-only tracking (BOT) system when using 50 particles.