论文标题
使用深度学习,对合成Gaia dr2中暗物质Subhalos的敏感性估计
Sensitivity Estimation for Dark Matter Subhalos in Synthetic Gaia DR2 using Deep Learning
论文作者
论文摘要
绕宿主星系绕的深色物质(DM)Subhalos是宇宙框架的一般预测,是限制DM性质的一种有希望的方式。在本文中,我们研究了基于机器学习的工具来量化由DM Subhalos通过的通过引起的相位扰动的大小。提出了一个简单的二进制分类器和异常检测模型,以估计在模拟中可以在统计上检测到接近DM Subhalos的恒星或恒星颗粒。模拟数据集是三个银河系状的星系和九个合成GAIA DR2调查。首先,我们发现在模拟的星系上训练了具有完整6D运动学观测值并应用于另一个星系上的异常检测算法,对DM Subhalo种群非常敏感。另一方面,由于信号恒星的极低统计数据用于监督训练,因此基于分类的方法不够敏感。最后,两种算法在类似Gaia的调查中的敏感性都可以忽略不计。 GAIA数据集的巨大尺寸激发了可扩展和准确的数据分析方法的进一步开发,这些方法可用于选择DM搜索的潜在潜在区域,以最终限制Milky Way的Subhalo质量函数,以及在不同信号下研究此类方法的敏感性。
The abundance of dark matter (DM) subhalos orbiting a host galaxy is a generic prediction of the cosmological framework, and is a promising way to constrain the nature of DM. In this paper, we investigate the use of machine learning-based tools to quantify the magnitude of phase-space perturbations caused by the passage of DM subhalos. A simple binary classifier and an anomaly detection model are proposed to estimate if stars or star particles close to DM subhalos are statistically detectable in simulations. The simulated datasets are three Milky Way-like galaxies and nine synthetic Gaia DR2 surveys derived from these. Firstly, we find that the anomaly detection algorithm, trained on a simulated galaxy with full 6D kinematic observables and applied on another galaxy, is nontrivially sensitive to the DM subhalo population. On the other hand, the classification-based approach is not sufficiently sensitive due to the extremely low statistics of signal stars for supervised training. Finally, the sensitivity of both algorithms in the Gaia-like surveys is negligible. The enormous size of the Gaia dataset motivates the further development of scalable and accurate data analysis methods that could be used to select potential regions of interest for DM searches to ultimately constrain the Milky Way's subhalo mass function, as well as simulations where to study the sensitivity of such methods under different signal hypotheses.