论文标题
非热式和$ \ Mathcal {pt} $的功能重归其化组 - 对称系统
Functional renormalization group for non-Hermitian and $\mathcal{PT}$-symmetric systems
论文作者
论文摘要
我们将功能重新归一化组的顶点扩展方法推广到非热系统。由于某些异常期望值可能不会消失,因此与遗传学案例相比,可以出现在流程方程中。我们通过考虑可解决的$ \ Mathcal {pt} $ - 对称的非线性玩具模式模型,并揭示了在这种模型中,在此模型中,在此模型中扩展在近距离动机的truncation Schema中,您可以与她的MERSITAIL案例相提并论,从而调查了非甲米系统的顶点扩展的优点和缺点。顶点的扩展似乎是研究非热式系统中相关效应的可行方法。
We generalize the vertex expansion approach of the functional renormalization group to non-Hermitian systems. As certain anomalous expectation values might not vanish, additional terms as compared to the Hermitian case can appear in the flow equations. We investigate the merits and shortcomings of the vertex expansion for non-Hermitian systems by considering an exactly solvable $\mathcal{PT}$-symmetric non-linear toy-model and reveal, that in this model, the fidelity of the vertex expansion in a perturbatively motivated truncation schema is comparable with that of the Hermitian case. The vertex expansion appears to be a viable method for studying correlation effects in non-Hermitian systems.