论文标题
在Fano属的Fano完整交叉口
On Genus 1 Gromov-Witten invariants of Fano complete intersections
论文作者
论文摘要
我们研究了投影空间中Fano完整交叉点的Gromov-witten属属。除其他外,我们还显示了仅具有环境插入的属1属的重建定理,并计算具有1个标记点的属1属。对于尺寸$ \ neq 4 $和两个Quadrics的奇数相交的立方体曲面,我们获得了1个Gromov-witten不变性属的完整重建定理。
We study genus 1 Gromov-Witten invariants of Fano complete intersections in the projective spaces. Among other things, we show a reconstruction theorem for genus 1 invariants with only ambient insertions, and compute the genus 1 invariants with 1 marked point. For cubic hypersurfaces of dimension $\neq 4$ and odd dimensional intersections of two quadrics, we obtain a complete reconstruction theorem for genus 1 Gromov-Witten invariants.