论文标题

广泛但不健壮?比较数据修改方法对跨域概括和对抗性鲁棒性的影响

Generalized but not Robust? Comparing the Effects of Data Modification Methods on Out-of-Domain Generalization and Adversarial Robustness

论文作者

Gokhale, Tejas, Mishra, Swaroop, Luo, Man, Sachdeva, Bhavdeep Singh, Baral, Chitta

论文摘要

在自然语言处理和计算机视觉文献中,通过其他培训数据集,数据增强,偏差和数据集过滤的数据修改是作为概括到室外输入(OOD)输入的有效解决方案。但是,数据修改对对抗性鲁棒性的影响尚不清楚。在这项工作中,我们对常见数据修改策略进行了全面研究,不仅评估了它们的内域和OOD绩效,还评估其对抗性鲁棒性(AR)。我们还对二维合成数据集提出了结果,以可视化每种方法对训练分布的影响。这项工作是一项实证研究,旨在理解对看不见的领域的推广与捍卫对抗性扰动之间的关系。我们的发现表明,更多的数据(通过其他数据集或数据增强)使OOD的准确性和AR都受益。但是,数据过滤(以前显示以提高自然语言推论的OOD准确性)在其他任务(例如问答和图像分类)上损害了OOD的精度。我们提供实验的见解,以告知未来的工作。

Data modification, either via additional training datasets, data augmentation, debiasing, and dataset filtering, has been proposed as an effective solution for generalizing to out-of-domain (OOD) inputs, in both natural language processing and computer vision literature. However, the effect of data modification on adversarial robustness remains unclear. In this work, we conduct a comprehensive study of common data modification strategies and evaluate not only their in-domain and OOD performance, but also their adversarial robustness (AR). We also present results on a two-dimensional synthetic dataset to visualize the effect of each method on the training distribution. This work serves as an empirical study towards understanding the relationship between generalizing to unseen domains and defending against adversarial perturbations. Our findings suggest that more data (either via additional datasets or data augmentation) benefits both OOD accuracy and AR. However, data filtering (previously shown to improve OOD accuracy on natural language inference) hurts OOD accuracy on other tasks such as question answering and image classification. We provide insights from our experiments to inform future work in this direction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源