论文标题
部分可观测时空混沌系统的无模型预测
BR2 discontinuous Galerkin methods for finite hyperelastic deformations
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In this work we introduce a dG framework for nonlinear elasticity based on a Bassi-Rebay (BR2) formulation. The framework encompasses compressible and incompressible hyperelastic materials and is capable of dealing with large deformations. In order to achieve stability, we combine higher-order lifting operators for the BR2 stabilization term with an adaptive stabilization strategy which relies on the BR2 Laplace operator stabilization and a penalty parameter based on the spectrum of the fourth-order elasticity tensor. Dirichlet boundary conditions for the displacement can be imposed by means of Lagrange multipliers and Nitsche method. Efficiency of the solution strategy is achieved by means of state-of-the-art agglomeration based $h$-multigrid preconditioners and the code implementation supports distributed memory execution on modern parallel architectures. Several benchmark test cases are proposed in order to investigate some relevant computational aspects, namely the performance of the $h$-multigrid iterative solver varying the stabilization parameters and the influence of Dirichlet boundary conditions on Newton's method globalisation strategy.