论文标题
通过机器学习潜力扩展材料科学的量子计算的范围
Extending the reach of quantum computing for materials science with machine learning potentials
论文作者
论文摘要
解决电子结构问题代表了量子计算机的有前途的应用领域。当前,在设计和优化量子算法方面花费了很多努力,以解决多达数百个电子的量子化学问题。虽然量子算法原则上可以优于其经典等效物,但多项式缩放的运行时(具有成分的数量)仍然可以防止大规模系统的量子模拟。我们提出了一种策略,将量子计算方法的范围扩展到使用机器学习潜力的量子模拟数据培训的大规模模拟。在当今量子设置中应用机器学习潜力的挑战来自影响电子能量和力的量子计算的噪声来源。我们研究了选择各种噪声来源的机器学习潜力的训练性:统计,优化和硬件噪声。最后,我们从根据氢分子的实际IBM量子处理器计算的数据构建了第一个机器学习潜力。这已经使我们可以执行任意长而稳定的分子动力学模拟,从而超过了所有当前量子方法的分子动力学和结构优化。
Solving electronic structure problems represents a promising field of application for quantum computers. Currently, much effort has been spent in devising and optimizing quantum algorithms for quantum chemistry problems featuring up to hundreds of electrons. While quantum algorithms can in principle outperform their classical equivalents, the polynomially scaling runtime, with the number of constituents, can still prevent quantum simulations of large scale systems. We propose a strategy to extend the scope of quantum computational methods to large scale simulations using a machine learning potential, trained on quantum simulation data. The challenge of applying machine learning potentials in today's quantum setting arises from the several sources of noise affecting the quantum computations of electronic energies and forces. We investigate the trainability of a machine learning potential selecting various sources of noise: statistical, optimization and hardware noise.Finally, we construct the first machine learning potential from data computed on actual IBM Quantum processors for a hydrogen molecule. This already would allow us to perform arbitrarily long and stable molecular dynamics simulations, outperforming all current quantum approaches to molecular dynamics and structure optimization.