论文标题

对象歧管的软修订分类

Soft-margin classification of object manifolds

论文作者

Cohen, Uri, Sompolinsky, Haim

论文摘要

对单个对象的多种外观响应的神经群体定义了神经反应空间中的多种多样。对此类流形进行分类的能力引起了人们的关注,因为对象识别和其他计算任务需要对歧管内变异性不敏感的响应。先前研究了对象歧管的线性分类,用于最大利润分类器。软净利润分类器是较大的算法类别,并在应用程序中提供了一个附加的正规化参数,以通过在较少的训练错误和学习更强大的分类器之间进行平衡来优化培训集外的性能。在这里,我们开发了一种平均场理论,描述了应用于对象流形的软边缘分类器的行为。从点到一般流形到一般歧管,以增加的复杂性分析歧管,平均场理论描述了线性分类器规范的期望值,以及场和松弛变量的分布。通过分析学习到噪声的鲁棒性,我们可以预测分类误差的概率及其对正则化的依赖性,证明有限的最佳选择。该理论描述了先前未知的相变,与非平凡解的消失相对应,从而提供了最大最大细边分类器的众所周知分类能力的软版本。

A neural population responding to multiple appearances of a single object defines a manifold in the neural response space. The ability to classify such manifolds is of interest, as object recognition and other computational tasks require a response that is insensitive to variability within a manifold. Linear classification of object manifolds was previously studied for max-margin classifiers. Soft-margin classifiers are a larger class of algorithms and provide an additional regularization parameter used in applications to optimize performance outside the training set by balancing between making fewer training errors and learning more robust classifiers. Here we develop a mean-field theory describing the behavior of soft-margin classifiers applied to object manifolds. Analyzing manifolds with increasing complexity, from points through spheres to general manifolds, a mean-field theory describes the expected value of the linear classifier's norm, as well as the distribution of fields and slack variables. By analyzing the robustness of the learned classification to noise, we can predict the probability of classification errors and their dependence on regularization, demonstrating a finite optimal choice. The theory describes a previously unknown phase transition, corresponding to the disappearance of a non-trivial solution, thus providing a soft version of the well-known classification capacity of max-margin classifiers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源