论文标题
SuperCone:通过概念元学习对异质专家的统一用户细分
SuperCone: Unified User Segmentation over Heterogeneous Experts via Concept Meta-learning
论文作者
论文摘要
我们研究用户细分的问题:给定一组用户以及一个或多个预定义的组或细分市场,将用户分配给其相应的细分市场。例如,对于在体育或娱乐的某个领域表明特定兴趣的细分市场,任务将是预测每个用户是否属于该细分市场。但是,可能存在许多长时间的尾巴预测任务,这些任务遭受了数据可用性的影响,并且可能具有异质性质,这使得很难使用单一的Off Shelf Model体系结构来捕获。在这项工作中,我们介绍了超级科目,即解决上述挑战的统一谓词细分市场。它以平坦的概念表示为基础,总结了每个用户的异质数字足迹,并使用称为“超级学习”的方法统一地对每个预测任务进行建模,也就是说,将预测模型与不同的体系结构或学习方法相结合,这些模型与彼此不兼容。此后,我们提供了一种端到端的方法,该方法学会灵活地参加最适合的异质专家,同时结合了增强上述专家的输入概念的深刻表示。实验表明,超级酮在广泛的谓词段任务和公共结构性数据学习基准上明显胜过最先进的建议和对算法的排名。
We study the problem of user segmentation: given a set of users and one or more predefined groups or segments, assign users to their corresponding segments. As an example, for a segment indicating particular interest in a certain area of sports or entertainment, the task will be to predict whether each single user will belong to the segment. However, there may exist numerous long tail prediction tasks that suffer from data availability and may be of heterogeneous nature, which make it hard to capture using single off the shelf model architectures. In this work, we present SuperCone, our unified predicative segments system that addresses the above challenges. It builds on top of a flat concept representation that summarizes each user's heterogeneous digital footprints, and uniformly models each of the prediction task using an approach called "super learning ", that is, combining prediction models with diverse architectures or learning method that are not compatible with each other. Following this, we provide an end to end approach that learns to flexibly attend to best suited heterogeneous experts adaptively, while at the same time incorporating deep representations of the input concepts that augments the above experts. Experiments show that SuperCone significantly outperform state-of-the-art recommendation and ranking algorithms on a wide range of predicative segment tasks and public structured data learning benchmarks.