论文标题

通过双路径denoising网络从合成孔径雷达图像从合成孔径雷达图像更改检测

Change Detection from Synthetic Aperture Radar Images via Dual Path Denoising Network

论文作者

Wang, Junjie, Gao, Feng, Dong, Junyu, Du, Qian, Li, Heng-Chao

论文摘要

受益于合成孔径雷达(SAR)传感器的快速和可持续发展,SAR图像的变化检测在过去几年中引起了人们的注意。现有的无监督的基于学习的方法已竭尽全力利用强大的特征表示,但它们消耗了很多时间来优化参数。此外,这些方法使用聚类来获得伪标记进行训练,并且伪标记的样品通常涉及误差,可以将其视为“标签噪声”。为了解决这些问题,我们提出了一个双路径剥落网络(DPDNET),以进行SAR图像更改检测。特别是,我们介绍了随机标签传播,以清洁涉及预制的标签噪声。我们还提出了特征表示学习的独特补丁卷积,以减少时间消耗。具体而言,注意机制用于选择特征图中的独特像素,并选择这些像素周围的斑块作为卷积内核。因此,DPDNET不需要大量的培训样本来优化参数,并且其计算效率大大提高。已经在五个SAR数据集上进行了广泛的实验,以验证提出的DPDNET。实验结果表明,我们的方法的表现优于变化检测结果的几种最新方法。

Benefited from the rapid and sustainable development of synthetic aperture radar (SAR) sensors, change detection from SAR images has received increasing attentions over the past few years. Existing unsupervised deep learning-based methods have made great efforts to exploit robust feature representations, but they consume much time to optimize parameters. Besides, these methods use clustering to obtain pseudo-labels for training, and the pseudo-labeled samples often involve errors, which can be considered as "label noise". To address these issues, we propose a Dual Path Denoising Network (DPDNet) for SAR image change detection. In particular, we introduce the random label propagation to clean the label noise involved in preclassification. We also propose the distinctive patch convolution for feature representation learning to reduce the time consumption. Specifically, the attention mechanism is used to select distinctive pixels in the feature maps, and patches around these pixels are selected as convolution kernels. Consequently, the DPDNet does not require a great number of training samples for parameter optimization, and its computational efficiency is greatly enhanced. Extensive experiments have been conducted on five SAR datasets to verify the proposed DPDNet. The experimental results demonstrate that our method outperforms several state-of-the-art methods in change detection results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源