论文标题
使用网络元回归合成跨设计证据和跨格式数据
Synthesizing cross-design evidence and cross-format data using network meta-regression
论文作者
论文摘要
在网络荟萃分析(NMA)中,我们通过相互竞争的治疗综合了有关健康结果的所有相关证据。证据可能来自随机对照试验(RCT)或非随机研究(NRS)作为个别参与者数据(IPD)或作为汇总数据(AD)。我们提出了一套贝叶斯NMA和网络元回归(NMR)模型,允许进行交叉设计和跨格式合成。这些模型集成了一个三级分层模型,以将IPD合成和AD合成四种方法。这四种方法解释了RCT和NRS证据中偏见的设计和风险的差异。这四种方法可忽略偏见风险的差异,使用NRS构建受惩罚的治疗效果先验和偏见调整模型,这些模型以两种不同的方式控制了来自高偏见研究的信息的贡献。我们说明了三种药理学干预措施的网络中的方法和安慰剂,用于复发多发性硬化症患者。当我们考虑到设计和偏见的风险差异时,估计的相对治疗效果不会发生太大变化。进行网络元回归表明,干预功效随着参与者年龄的增加而降低。我们重新安装了一个431 RCT的网络,比较了21种抗抑郁药,并且在调整研究高偏见的高风险时,我们没有观察到干预功效的物质变化。总而言之,NMA/NMR模型的描述套件可以包含所有相关证据,同时通过包含参与者的特征来纳入观察和实验数据中有关研究内部偏差的信息,并实现了个性化治疗效应的估计。
In network meta-analysis (NMA), we synthesize all relevant evidence about health outcomes with competing treatments. The evidence may come from randomized controlled trials (RCT) or non-randomized studies (NRS) as individual participant data (IPD) or as aggregate data (AD). We present a suite of Bayesian NMA and network meta-regression (NMR) models allowing for cross-design and cross-format synthesis. The models integrate a three-level hierarchical model for synthesizing IPD and AD into four approaches. The four approaches account for differences in the design and risk of bias in the RCT and NRS evidence. These four approaches variously ignoring differences in risk of bias, using NRS to construct penalized treatment effect priors and bias-adjustment models that control the contribution of information from high risk of bias studies in two different ways. We illustrate the methods in a network of three pharmacological interventions and placebo for patients with relapsing-remitting multiple sclerosis. The estimated relative treatment effects do not change much when we accounted for differences in design and risk of bias. Conducting network meta-regression showed that intervention efficacy decreases with increasing participant age. We re-analysed a network of 431 RCT comparing 21 antidepressants, and we did not observe material changes in intervention efficacy when adjusting for studies high risk of bias. In summary, the described suite of NMA/NMR models enables inclusion of all relevant evidence while incorporating information on the within-study bias in both observational and experimental data and enabling estimation of individualized treatment effects through the inclusion of participant characteristics.