论文标题

平均现场信息Hessian矩阵图

Mean field information Hessian matrices on graphs

论文作者

Li, Wuchen, Lu, Linyuan

论文摘要

我们在有限图上得出了平均场信息Hessian矩阵。 “信息”是指概率单纯性的熵功能。 “平均场”是指在图形上支持的概率的非线性权重函数。这两个概念定义了平均场最佳运输类型度量。在这个度量空间中,我们首先在图形上得出了能量的Hessian矩阵,包括线性,相互作用能,熵。我们将其最小的特征值命名为图表上的平均电场RICCI曲率边界。接下来,我们提供了两点空间和图形产品的示例。我们上次介绍了拟议矩阵的几个应用。例如,我们证明Costa的熵功率不平等在两点空间上。

We derive mean-field information Hessian matrices on finite graphs. The "information" refers to entropy functions on the probability simplex. And the "mean-field" means nonlinear weight functions of probabilities supported on graphs. These two concepts define a mean-field optimal transport type metric. In this metric space, we first derive Hessian matrices of energies on graphs, including linear, interaction energies, entropies. We name their smallest eigenvalues as mean-field Ricci curvature bounds on graphs. We next provide examples on two-point spaces and graph products. We last present several applications of the proposed matrices. E.g., we prove discrete Costa's entropy power inequalities on a two-point space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源