论文标题

关于阳米米尔斯重力违反电磁量规对称性的实验,使用约瑟夫森效应超导体

Experiments on the Violation of Electromagnetic Gauge Symmetry by Yang-Mills Gravity Using Josephson Effects in Superconductors

论文作者

Hsu, Jong-Ping, Hsu, Leonardo

论文摘要

Yang-Mills重力是一种基于平坦时空的翻译量规对称性的重力理论。所有量子场与量子阳性电场的通用耦合是基于$ \ \partial_μ$的替换,而在非格拉维特领域的lagrangians中,转化量规协方差衍生物$(\partial_μ+gential_μ+g ϕ_μ^g partial_v \partial_ν)$。在地球表面附近,杨米尔斯重力导致相位梯度$ \partial_kθ$被$ h_1 \ of(1- g ϕ)\ of times 10^{ - 10} $更改。此外,约瑟夫森交界处的相位梯度和矢量电位的常规规格不变组合$ {\ bf a} $已修改,并且不再是规格不变的。因此,约瑟夫森交界处的电压受到引力耦合常数$ g $的影响,现在由$ v_ {g21} \ of q \ int_1^2 [ - \ mbox {\ boldmath $ {\ boldmath $ {\ bf \ nabla} $} $} $} a}}/{\ partial t}] \ cdot d {\ bf s} $。我们提出了基于这种效果的Yang-Mills重力的实验测试。如果要比较地球上一个实验室中的约瑟夫森交界处的电压与自由跌倒的一个交界处(例如,在国际空间站或在机动的飞机上进行模拟零重力的飞机,例如NASA如今已退休的“呕吐”),Yang-Mills Grattity,Yang-Mills Grattity应该预测$ 10^$ 10^$ 10.约瑟夫森连接电压标准的精度为$ 10^{10} $的几个零件。

Yang-Mills gravity is a quantum theory of gravity with translational gauge symmetry that is based on a flat space-time. The universal coupling of all quantum fields to quantum Yang-Mills gravity is based on the replacement of $\partial_μ$ by the translational gauge covariant derivative $(\partial_μ+gϕ_μ^ν\partial_ν)$ in the Lagrangians of non-gravitational fields. Near the surface of the Earth, Yang-Mills gravity causes the phase gradient $\partial_k θ$ to be altered by a factor of $h_1\approx(1- gϕ)\approx 1- 7\times 10^{-10}$. In addition, the usual gauge-invariant combination of phase gradients and vector potentials ${\bf A}$ in Josephson junctions is modified and is no longer gauge invariant. The voltage across a Josephson junction is thus affected by the presence of the gravitational coupling constant $g$, and is now given by $V_{g21}\approx Q \int_1^2 [- \mbox{\boldmath$ {\bf \nabla}$} A_0 - h_1^{-2}{\partial {\bf A}}/{\partial t}]\cdot d{\bf s}$. We propose an experimental test of Yang-Mills gravity based on this effect. If one were to compare the voltage across a Josephson junction in a laboratory at rest on Earth with that across a junction in free fall (e.g., in the International Space Station or in a plane maneuvering to simulate zero-gravity such as NASA's now-retired "Vomit Comet"), Yang-Mills gravity predicts a difference on the order of 1 part in $10^{9}$, which should be detectable as the precision of the Josephson junction voltage standard is on the order of a few parts in $10^{10}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源