论文标题

民主确实很重要:共同降低对象检测的综合特征采矿

Democracy Does Matter: Comprehensive Feature Mining for Co-Salient Object Detection

论文作者

Yu, Siyue, Xiao, Jimin, Zhang, Bingfeng, Lim, Eng Gee

论文摘要

共同定位对象检测的目标是在一组图像中检测共存的显着对象,这一目标已获得流行。最近的作品使用注意机制或额外信息来汇总常见的共同升华特征,从而导致目标对象的不正确响应不正确。在本文中,我们旨在挖掘民主的全面共同提升特征,并减少背景干预,而无需引入任何额外的信息。为了实现这一目标,我们设计了一个民主的原型生成模块,以产生民主反应图,涵盖足够的共同提升区域,从而涉及更多共同的共同属性。然后,可以生成基于响应图的综合原型作为最终预测的指南。为了抑制原型中的嘈杂背景信息,我们提出了一个自对比度学习模块,在不依赖其他分类信息的情况下形成正面和负面对。此外,我们还设计了一个民主的功能增强模块,以通过重新调整注意力价值来进一步增强共同提升功能。广泛的实验表明,我们的模型比以前的最先进方法更好,尤其是在挑战现实情况下(例如,对于可口可乐,MAE获得2.0%的增长率为2.0%,最大F量为5.4%,最大e-Measure的2.3%的收益为2.3%,在相同的设置下获得了3.7%的增长率)。代码将很快发布。

Co-salient object detection, with the target of detecting co-existed salient objects among a group of images, is gaining popularity. Recent works use the attention mechanism or extra information to aggregate common co-salient features, leading to incomplete even incorrect responses for target objects. In this paper, we aim to mine comprehensive co-salient features with democracy and reduce background interference without introducing any extra information. To achieve this, we design a democratic prototype generation module to generate democratic response maps, covering sufficient co-salient regions and thereby involving more shared attributes of co-salient objects. Then a comprehensive prototype based on the response maps can be generated as a guide for final prediction. To suppress the noisy background information in the prototype, we propose a self-contrastive learning module, where both positive and negative pairs are formed without relying on additional classification information. Besides, we also design a democratic feature enhancement module to further strengthen the co-salient features by readjusting attention values. Extensive experiments show that our model obtains better performance than previous state-of-the-art methods, especially on challenging real-world cases (e.g., for CoCA, we obtain a gain of 2.0% for MAE, 5.4% for maximum F-measure, 2.3% for maximum E-measure, and 3.7% for S-measure) under the same settings. Code will be released soon.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源