论文标题
一个预测空间天气相关特性的磁性云预测模型
A magnetic cloud prediction model for forecasting space weather relevant properties of Earth-directed coronal mass ejections
论文作者
论文摘要
冠状质量弹出(CMES)是太阳中的能量风暴,导致在行星际空间中大规模磁云(MCS)的射出,其中包含具有相干变化的磁场方向增强的磁场。地磁扰动的严重程度取决于行星际磁场(IMF)的方向和强度,以及风暴通过的速度和持续时间。当IMF方向长时间向南持续向南时,地球环环境与地球磁层之间的耦合是最强的。预测这种指导CME的磁性曲线对于估计其地磁影响至关重要。我们旨在建立并整合多种技术,以开发综合的磁云预测(MCP)模型,该模型可以预测磁场向量,地球影响时间,太阳风暴的速度和持续时间。我们方案的新颖性是能够预测风暴的通行持续时间,而无需求助于计算密集,时间依赖时间的动态方程。我们的方法可以通过将MCP模型输出与1 Au的10个MC的观察结果进行比较来验证。在我们的样本中,我们发现八个MC在预测和观察到的磁性轮廓之间显示均方根偏差小于0.1,而七个MC的通过持续时间落在预测范围内。基于这种方法的成功,我们得出的结论是,基于分析和建模近似CME观察的MCS的近地特性是可行的努力,具有潜在的空间天气评估益处。
Coronal Mass Ejections (CMEs) are energetic storms in the Sun that result in the ejection of large-scale magnetic clouds (MCs) in interplanetary space that contain enhanced magnetic fields with coherently changing field direction. The severity of geomagnetic perturbations depends on the direction and strength of the interplanetary magnetic field (IMF), as well as the speed and duration of passage of the storm. The coupling between the heliospheric environment and Earth's magnetosphere is the strongest when the IMF direction is persistently southward for a prolonged period. Predicting the magnetic profile of such Earth-directed CMEs is crucial for estimating their geomagnetic impact. We aim to build upon and integrate diverse techniques towards development of a comprehensive magnetic cloud prediction (MCP) model that can forecast the magnetic field vectors, Earth-impact time, speed and duration of passage of solar storms. A novelty of our scheme is the ability to predict the passage duration of the storm without recourse to computationally intensive, time-dependent dynamical equations. Our methodology is validated by comparing the MCP model output with observations of ten MCs at 1 AU. In our sample, we find that eight MCs show a root mean square deviation of less than 0.1 between predicted and observed magnetic profiles and the passage duration of seven MCs fall within the predicted range. Based on the success of this approach, we conclude that predicting the near-Earth properties of MCs based on analysis and modelling of near-Sun CME observations is a viable endeavor with potential benefits for space weather assessment.