论文标题

篮子试验中的多任务对抗学习以进行治疗效果估算

Multi-Task Adversarial Learning for Treatment Effect Estimation in Basket Trials

论文作者

Chu, Zhixuan, Rathbun, Stephen L., Li, Sheng

论文摘要

观察数据的估计效果提供了有关因果关系的见解,这些因果关系指导了许多现实世界中的应用,例如不同的临床研究设计,这是对医学,临床和其他类型研究的试验,实验和观察性研究的表述。在本文中,我们描述了在一个名为篮子试验的新型临床设计中的因果推断,该试验测试了一种新药在患有不同类型的癌症患者中的作用,这些癌症都具有相同的突变。我们提出了一种多任务对抗学习(MTAL)方法,该方法结合了特征选择多任务表示学习和对抗性学习,以估计具有相同基因突变但具有不同肿瘤类型的患者的不同肿瘤类型的潜在结果。在我们的论文中,篮子试验被用作直观的例子,以介绍这种新的因果推论。这个新的因果推理环境包括但不限于篮子试验。这种环境与传统的因果推理问题有着相同的挑战,即,在不同的亚组中缺少反事实结果和由于混杂因素引起的治疗选择偏见。我们介绍了MTAL方法的实际优势,用于分析合成篮试验数据,并评估在IHDP和News两个基准的两个基准上提出的估计器。结果证明了我们的MTAL方法优于竞争性最新方法。

Estimating treatment effects from observational data provides insights about causality guiding many real-world applications such as different clinical study designs, which are the formulations of trials, experiments, and observational studies in medical, clinical, and other types of research. In this paper, we describe causal inference for application in a novel clinical design called basket trial that tests how well a new drug works in patients who have different types of cancer that all have the same mutation. We propose a multi-task adversarial learning (MTAL) method, which incorporates feature selection multi-task representation learning and adversarial learning to estimate potential outcomes across different tumor types for patients sharing the same genetic mutation but having different tumor types. In our paper, the basket trial is employed as an intuitive example to present this new causal inference setting. This new causal inference setting includes, but is not limited to basket trials. This setting has the same challenges as the traditional causal inference problem, i.e., missing counterfactual outcomes under different subgroups and treatment selection bias due to confounders. We present the practical advantages of our MTAL method for the analysis of synthetic basket trial data and evaluate the proposed estimator on two benchmarks, IHDP and News. The results demonstrate the superiority of our MTAL method over the competing state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源