论文标题

通过选择性操纵色度的低光图像和视频增强

Low-light Image and Video Enhancement via Selective Manipulation of Chromaticity

论文作者

Shekhar, Sumit, Reimann, Max, Semmo, Amir, Pasewaldt, Sebastian, Döllner, Jürgen, Trapp, Matthias

论文摘要

在弱光条件下的图像采集遭受质量差和视觉美学的显着降解。这会影响获得图像的视觉感知以及采集后应用的各种计算机视觉和图像处理算法的性能。特别是对于视频,附加的时间域使其更具挑战性,其中我们需要以时间连贯的方式保留质量。我们为低光图像和视频增强提供了一种简单而有效的方法。为此,我们引入了“自适应色彩”,这是指图像色度的自适应计算。上述适应性使我们避免了许多现有技术采用的低光图像分解为照明和反射的昂贵步骤。我们方法中的所有阶段都仅包括基于点的操作以及高通或低通滤波,从而确保在每帧以视频为基础上应用时,时间不一致的数量可以忽略不计。我们在标准低光图像数据集上的结果显示了我们算法的功效及其在几种最先进的技术上的定性和定量优势。对于野外捕获的视频,我们进行了一项用户研究,以证明与最新方法相比,我们的方法的偏好。

Image acquisition in low-light conditions suffers from poor quality and significant degradation in visual aesthetics. This affects the visual perception of the acquired image and the performance of various computer vision and image processing algorithms applied after acquisition. Especially for videos, the additional temporal domain makes it more challenging, wherein we need to preserve quality in a temporally coherent manner. We present a simple yet effective approach for low-light image and video enhancement. To this end, we introduce "Adaptive Chromaticity", which refers to an adaptive computation of image chromaticity. The above adaptivity allows us to avoid the costly step of low-light image decomposition into illumination and reflectance, employed by many existing techniques. All stages in our method consist of only point-based operations and high-pass or low-pass filtering, thereby ensuring that the amount of temporal incoherence is negligible when applied on a per-frame basis for videos. Our results on standard lowlight image datasets show the efficacy of our algorithm and its qualitative and quantitative superiority over several state-of-the-art techniques. For videos captured in the wild, we perform a user study to demonstrate the preference for our method in comparison to state-of-the-art approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源