论文标题

面部识别上的可控评估和生成身体对抗斑块

Controllable Evaluation and Generation of Physical Adversarial Patch on Face Recognition

论文作者

Yang, Xiao, Dong, Yinpeng, Pang, Tianyu, Xiao, Zihao, Su, Hang, Zhu, Jun

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Recent studies have revealed the vulnerability of face recognition models against physical adversarial patches, which raises security concerns about the deployed face recognition systems. However, it is still challenging to ensure the reproducibility for most attack algorithms under complex physical conditions, which leads to the lack of a systematic evaluation of the existing methods. It is therefore imperative to develop a framework that can enable a comprehensive evaluation of the vulnerability of face recognition in the physical world. To this end, we propose to simulate the complex transformations of faces in the physical world via 3D-face modeling, which serves as a digital counterpart of physical faces. The generic framework allows us to control different face variations and physical conditions to conduct reproducible evaluations comprehensively. With this digital simulator, we further propose a Face3DAdv method considering the 3D face transformations and realistic physical variations. Extensive experiments validate that Face3DAdv can significantly improve the effectiveness of diverse physically realizable adversarial patches in both simulated and physical environments, against various white-box and black-box face recognition models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源