论文标题

高维统计分析及其在NGC 253的Alma图中的应用

High Dimensional Statistical Analysis and its Application to ALMA Map of NGC 253

论文作者

Takeuchi, Tsutomu T., Yata, Kazuyoshi, Egashira, Kento, Aoshima, Makoto, Ishii, Aki, Cooray, Suchetha, Nakanishi, Kouichiro, Kohno, Kotaro, Kono, Kai T.

论文摘要

在天文学中,如果我们将数据的尺寸表示为$ d $,而样品数量为$ n $,我们通常会遇到$ n \ ll d $的案例。传统上,这种情况被认为是不适合的,别无选择,只能将大部分信息丢弃在数据维度中,以便让$ d <n $。 $ n \ ll d $的数据称为高维低样本量(HDLSS)。 {}解决HDLSS问题,在过去的十年中,已迅速开发了一种称为高维统计的方法。在这项工作中,我们首先将高维统计分析介绍给天文学社区。我们在高维统计分析方法中应用两种代表性方法,即还原主成分分析(NRPCA)和正则化主组件分析(RPCA),以附近的原型starburst Galaxy NGC NGC 253的光谱图,由Atacama大毫升毫米/毫米/simbillimeter/Mibsillimeter/Mibsillimeter(Alma)。 ALMA地图是典型的HDLSS数据集。首先,我们分析了由于全身旋转而引起的原始数据,包括多普勒偏移。高维PCA可以精确地描述旋转的空间结构。然后,我们将其应用于多普勒移位校正的数据,以分析更微妙的光谱特征。 NRPCA和RPCA可以量化ALMA光谱的非常复杂的特征。特别是,我们可以从NGC 253的中心提取全局流出的信息。此方法不仅可以应用于光谱调查数据,还可以应用于任何样本量和较大维度的任何类型的数据。

In astronomy, if we denote the dimension of data as $d$ and the number of samples as $n$, we often meet a case with $n \ll d$. Traditionally, such a situation is regarded as ill-posed, and there was no choice but to throw away most of the information in data dimension to let $d < n$. The data with $n \ll d$ is referred to as high-dimensional low sample size (HDLSS). {}To deal with HDLSS problems, a method called high-dimensional statistics has been developed rapidly in the last decade. In this work, we first introduce the high-dimensional statistical analysis to the astronomical community. We apply two representative methods in the high-dimensional statistical analysis methods, the noise-reduction principal component analysis (NRPCA) and regularized principal component analysis (RPCA), to a spectroscopic map of a nearby archetype starburst galaxy NGC 253 taken by the Atacama Large Millimeter/Submillimeter Array (ALMA). The ALMA map is a typical HDLSS dataset. First we analyzed the original data including the Doppler shift due to the systemic rotation. The high-dimensional PCA could describe the spatial structure of the rotation precisely. We then applied to the Doppler-shift corrected data to analyze more subtle spectral features. The NRPCA and RPCA could quantify the very complicated characteristics of the ALMA spectra. Particularly, we could extract the information of the global outflow from the center of NGC 253. This method can also be applied not only to spectroscopic survey data, but also any type of data with small sample size and large dimension.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源