论文标题
耦合振荡器之间快速状态转移的反向工程
Inverse engineering of fast state transfer among coupled oscillators
论文作者
论文摘要
我们在时间依赖的耦合振荡器汉密尔顿人中设计了比无绝热状态转移(量子数的切换)。使用最近在S. Simsek和F. Mintert,Quantum 5(2021)409中提出的二维不变性发现的操作来驱动该过程,并涉及笛卡尔代表中电位主轴的旋转和瞬态缩放。重要的是,除了其基态所跨越的子空间外,这种不变是退化的。通常,这种堕落允许最终状态与理想目标本征的不忠。但是,可以选择单个控制参数的值,以便状态切换非常适合任意(不一定已知)初始特征态。其他2D线性不变性用于轻松找到所需的参数值,并为最终状态和最终能量提供通用表达式。特别是,我们发现粒子的二维谐波陷阱的时间相关转换(例如离子或中性原子),以便最终陷阱相对于初始陷阱旋转,并在某些选择的时间和旋转角度将初始陷阱的特征状态转换为最终的旋转复制品。
We design faster-than-adiabatic state transfers (switching of quantum numbers) in time-dependent coupled-oscillator Hamiltonians. The manipulation to drive the process is found using a two-dimensional invariant recently proposed in S. Simsek and F. Mintert, Quantum 5 (2021) 409, and involves both rotation and transient scaling of the principal axes of the potential in a Cartesian representation. Importantly, this invariant is degenerate except for the subspace spanned by its ground state. Such degeneracy, in general, allows for infidelities of the final states with respect to ideal target eigenstates. However, the value of a single control parameter can be chosen so that the state switching is perfect for arbitrary (not necessarily known) initial eigenstates. Additional 2D linear invariants are used to find easily the parameter values needed and to provide generic expressions for the final states and final energies. In particular we find time-dependent transformations of a two-dimensional harmonic trap for a particle (such as an ion or neutral atom) so that the final trap is rotated with respect to the initial one, and eigenstates of the initial trap are converted into rotated replicas at final time, in some chosen time and rotation angle.