论文标题

空气污染统计的空间异质性

Spatial heterogeneity of air pollution statistics

论文作者

He, Hankun, Schäfer, Benjamin, Beck, Christian

论文摘要

空气污染是全球死亡的主要原因之一,并继续对我们的健康产生不利影响。鉴于这些影响,已经设计了广泛的统计建模方法,以便更好地了解空气污染统计。但是,不同类型的空气污染物的时变统计数据远非充分理解。观察到的浓度的概率密度函数(PDF)在很大程度上取决于空间位置和污染物物质。 In this paper, we analyse a large variety of data from 3544 different European monitoring sites and show that the PDFs of nitric oxide ($NO$), nitrogen dioxide ($NO2$) and particulate matter ($PM10$ and $PM2.5$) concentrations generically exhibit heavy tails and are asymptotically well approximated by $q$-exponential distributions with a given width parameter $λ$.我们观察到power-law参数$ q $和宽度参数$λ$在不同的空间位置差异很大。对于每种物质,我们在$(q,λ)$平面中找到不同的参数云模式。这些取决于污染物的类型和环境特征(城市/郊区/农村/交通/工业/背景)。这意味着空气污染的有效统计物理描述表现出很强的空间异质性。

Air pollution is one of the leading causes of death globally, and continues to have a detrimental effect on our health. In light of these impacts, an extensive range of statistical modelling approaches has been devised in order to better understand air pollution statistics. However, the time-varying statistics of different types of air pollutants are far from being fully understood. The observed probability density functions (PDFs) of concentrations depend very much on the spatial location and on the pollutant substance. In this paper, we analyse a large variety of data from 3544 different European monitoring sites and show that the PDFs of nitric oxide ($NO$), nitrogen dioxide ($NO2$) and particulate matter ($PM10$ and $PM2.5$) concentrations generically exhibit heavy tails and are asymptotically well approximated by $q$-exponential distributions with a given width parameter $λ$. We observe that the power-law parameter $q$ and the width parameter $λ$ vary widely for the different spatial locations. For each substance, we find different patterns of parameter clouds in the $(q, λ)$ plane. These depend on the type of pollutants and on the environmental characteristics (urban/suburban/rural/traffic/industrial/background). This means the effective statistical physics description of air pollution exhibits a strong degree of spatial heterogeneity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源