论文标题
弱监督语义对应的概率扭曲一致性
Probabilistic Warp Consistency for Weakly-Supervised Semantic Correspondences
论文作者
论文摘要
我们提出了概率扭曲的一致性,这是一个针对语义匹配的弱监督的学习目标。我们的方法直接监督网络预测的密集匹配分数,该得分被编码为条件概率分布。我们首先通过将已知的翘曲应用于描绘同一对象类别不同实例的一对图像中的一个图像,构建图像三重态。然后,使用由此产生的图像三重态引起的约束来得出我们的概率学习目标。我们通过以可学习的无与伦比的状态扩展了我们的概率输出空间,进一步考虑了实际图像对中存在的遮挡和背景混乱。为了监督它,我们在描绘不同对象类的图像对之间设计了一个目标。我们通过将方法应用于最近的四个语义匹配体系结构来验证我们的方法。我们弱监督的方法为四个具有挑战性的语义匹配的基准制定了新的最先进。最后,我们证明,当我们的目标与关键点注释相结合时,我们的目标还带来了强烈监督政权的重大改进。
We propose Probabilistic Warp Consistency, a weakly-supervised learning objective for semantic matching. Our approach directly supervises the dense matching scores predicted by the network, encoded as a conditional probability distribution. We first construct an image triplet by applying a known warp to one of the images in a pair depicting different instances of the same object class. Our probabilistic learning objectives are then derived using the constraints arising from the resulting image triplet. We further account for occlusion and background clutter present in real image pairs by extending our probabilistic output space with a learnable unmatched state. To supervise it, we design an objective between image pairs depicting different object classes. We validate our method by applying it to four recent semantic matching architectures. Our weakly-supervised approach sets a new state-of-the-art on four challenging semantic matching benchmarks. Lastly, we demonstrate that our objective also brings substantial improvements in the strongly-supervised regime, when combined with keypoint annotations.