论文标题

人口动态中力的概念

The Concept of Force in Population Dynamics

论文作者

Hayward, John, Roach, Paul A.

论文摘要

人口动态领域具有丰富的历史,可以使用普通的微分方程来开发和分析生物和社会现象模型。本文介绍了一种理解一个变量在诸如力量之类的模型中对另一个变量施加的影响的方法,这些力的相对效应在可变行为中提供了对曲率的叙事解释。使用模型的库存/流程形式,开发了符号符号,该符号符合模型反馈回路的因果途径的力。力是根据其影响来衡量的,其定义为将加速度与变化速率的比率,通过沿变量之间的相关途径分化计算得出。确定力优势的不同阶段以增强模型的标准稳定性分析,以牛顿机械术语对模型行为进行解释。开发的概念应用于数学生物学:云杉芽虫模型的众所周知的模型,在该模型中,力优势确定了对干预点的明确性的场景; Lotka-Volterra Predator-Prey模型,其中分析强调了耗散力在实现稳定性方面的重要性。结论得出了这种方法的解释能力,并提出了未来工作的建议。

The area of population dynamics has a rich history of the development and analysis of models of biological and social phenomena using ordinary differential equations. This paper describes a method for understanding the influence one variable exerts on another in such models as a force, with the relative effects of these forces providing a narrative explanation of the curvature in variable behaviour. Using the stock/flow form of a model, a symbolic notation is developed that identifies the forces with the causal pathways of the model's feedback loops. A force is measured by its impact, defined as the ratio of acceleration to rate of change, computed by differentiation along its associated pathway between variables. Different phases of force dominance are determined to enhance the standard stability analysis of the models, providing an explanation of model behaviour in Newtonian mechanical terms. The concepts developed are applied to well-known models from mathematical biology: the Spruce Budworm model, where force dominance identifies scenarios that give clarity to intervention points; and the Lotka-Volterra predator-prey model where the analysis highlights the importance of dissipative forces in achieving stability. Conclusions are drawn on the explanatory power of this approach, with suggestions made for future work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源