论文标题

旋转单线的出现在Kagome Heisenberg Antiferromagnets Zn-Barlowite和Herbertsmithite中的旋转单线出现

Emergence of spin singlets with inhomogeneous gaps in the kagome Heisenberg antiferromagnets Zn-barlowite and herbertsmithite

论文作者

Wang, Jiaming, Yuan, Weishi, Singer, Philip M., Smaha, Rebecca W., He, Wei, Wen, Jiajia, Lee, Young S., Imai, Takashi

论文摘要

由沮丧的旋转形成的Kagome Heisenberg Antiferromagnet在拐角共享三角形的格子上形成的旋转是托管量子旋转液体(QSL)基态的主要候选者,该基态由纠缠的旋转式单线组成。但是,各种竞争状态的存在使人们对QSL基态的理论预测很困难,呼吁模型材料的实验线索。 Kagome晶格材料Zn-Barlowite Zncu $ _ {3} $(od)$ _ {6} $ fbr和Herbertsmithite Zncu $ _ {3} $ _ {3} $ _ {6} $ _ {6} $ cl $ _2 $ cl $ _2 $不表现出很长的范围,他们被认为是kagne的最佳范围。在这里,我们使用$^{63} $ cu核四极杆共振与逆laplace变换(ILT)相结合,以局部探测受疾病影响的精致量子基态的不均匀性。我们提供了直接证据表明,旋转单线的逐渐出现具有空间变化的激发差距,但即使在远低于超级交换能量尺度的温度下,它们的分数也限于总旋转的大约60 \%。理论模型需要结合障碍的作用,以说明观察到的不均匀造成的行为。

The kagome Heisenberg antiferromagnet formed by frustrated spins arranged in a lattice of corner-sharing triangles is a prime candidate for hosting a quantum spin liquid (QSL) ground state consisting of entangled spin singlets. But the existence of various competing states makes a convincing theoretical prediction of the QSL ground state difficult, calling for experimental clues from model materials. The kagome lattice materials Zn-barlowite ZnCu$_{3}$(OD)$_{6}$FBr and herbertsmithite ZnCu$_{3}$(OD)$_{6}$Cl$_2$ do not exhibit long range order, and they are considered the best realizations of the kagome Heisenberg antiferromagnet known to date. Here we use $^{63}$Cu nuclear quadrupole resonance combined with the inverse Laplace transform (ILT) to probe locally the inhomogeneity of delicate quantum ground states affected by disorder. We present direct evidence for the gradual emergence of spin singlets with spatially varying excitation gaps, but even at temperatures far below the super-exchange energy scale their fraction is limited to approximately 60\% of the total spins. Theoretical models need to incorporate the role of disorder to account for the observed inhomogeneously gapped behaviour.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源