论文标题

指导者:一个基于多任务指令的生成框架

InstructionNER: A Multi-Task Instruction-Based Generative Framework for Few-shot NER

论文作者

Wang, Liwen, Li, Rumei, Yan, Yang, Yan, Yuanmeng, Wang, Sirui, Wu, Wei, Xu, Weiran

论文摘要

最近,通过弥合语言模型预训练和下游任务的微调之间的差距,基于迅速的方法在几乎没有学习的方案中实现了显着的性能。但是,现有的提示模板主要是为句子级任务而设计的,并且不适合序列标记目标。为了解决上述问题,我们建议使用名为“实体识别”的低资源识别的基于多任务指令的生成框架,名为“指导者”。具体而言,我们将NER任务重新制定为一代问题,它通过特定于任务的说明和答案来丰富源句子,然后推断自然语言的实体和类型。我们进一步提出了两个辅助任务,包括实体提取和实体键入,这使模型能够分别捕获实体的更多边界信息,并加深对实体类型语义的理解。实验结果表明,我们的方法始终在五个数据集中在五个数据集上胜过其他基线。

Recently, prompt-based methods have achieved significant performance in few-shot learning scenarios by bridging the gap between language model pre-training and fine-tuning for downstream tasks. However, existing prompt templates are mostly designed for sentence-level tasks and are inappropriate for sequence labeling objectives. To address the above issue, we propose a multi-task instruction-based generative framework, named InstructionNER, for low-resource named entity recognition. Specifically, we reformulate the NER task as a generation problem, which enriches source sentences with task-specific instructions and answer options, then inferences the entities and types in natural language. We further propose two auxiliary tasks, including entity extraction and entity typing, which enable the model to capture more boundary information of entities and deepen the understanding of entity type semantics, respectively. Experimental results show that our method consistently outperforms other baselines on five datasets in few-shot settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源