论文标题

最大匹配和最快混合马尔可夫链的尺寸降低

Dimension reduction for maximum matchings and the Fastest Mixing Markov Chain

论文作者

Jain, Vishesh, Pham, Huy Tuan, Vuong, Thuy-Duong

论文摘要

令$ g =(v,e)$是一个无向图,具有最高度$δ$和顶点电导$ψ^*(g)$的图形。我们表明,存在一个对称的随机矩阵$ p $,并在$ e $上支撑了偏高的条目,其光谱间隙差距$γ^*(p)$满足\ [ψ^*(g)^{2}/\logδ\logδ\ logu fimeSimγ^*(p)\ simsim sim sim sim sim insim(p)\ nistim and shim(g),\ m)and shim(g),\] choune和shimψ^*(g)。回答了Olesker-Taylor和Zanetti的问题,他们以$ \logδ$代替了$ \ log | v | $获得了这样的结果。 为了获得我们的结果,我们展示了如何嵌入在$ v $上定义的负类型$ d $ d $中的$ \ m athbb {r}^{r}^{o(\loguΔ)} $支撑的否定性$ d'$,以使得(分数)匹配的(istractional)与权重$(v,v,v,v,e)的匹配数( $(v,e,d')$。

Let $G = (V,E)$ be an undirected graph with maximum degree $Δ$ and vertex conductance $Ψ^*(G)$. We show that there exists a symmetric, stochastic matrix $P$, with off-diagonal entries supported on $E$, whose spectral gap $γ^*(P)$ satisfies \[Ψ^*(G)^{2}/\logΔ\lesssim γ^*(P) \lesssim Ψ^*(G).\] Our bound is optimal under the Small Set Expansion Hypothesis, and answers a question of Olesker-Taylor and Zanetti, who obtained such a result with $\logΔ$ replaced by $\log|V|$. In order to obtain our result, we show how to embed a negative-type semi-metric $d$ defined on $V$ into a negative-type semi-metric $d'$ supported in $\mathbb{R}^{O(\logΔ)}$, such that the (fractional) matching number of the weighted graph $(V,E,d)$ is approximately equal to that of $(V,E,d')$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源