论文标题

基于块颗粒过滤的频谱聚类的约束光谱聚类进行分配

State space partitioning based on constrained spectral clustering for block particle filtering

论文作者

Min, Rui, Garnier, Christelle, Septier, François, Klein, John

论文摘要

粒子过滤器(PF)是一种强大的推理工具,用于估计非线性和/或非高斯问题中的过滤分布。为了克服PF维度的诅咒,块PF(BPF)插入了一个阻止步骤,将状态空间划分为几个子空间或较小维度的块,以便可以在每个子空间上独立执行校正和重新采样步骤。使用小尺寸的块减少了滤波分布估计的方差,但又又损坏了块之间的相关性,并引入了偏差。 当状态变量之间的依赖关系未知时,决定如何将状态空间拆分为块并不显而易见,并且可能是由于分区的不良选择而引起的。在本文中,我们将BPF中的分区问题作为聚类问题,并根据光谱聚类(SC)提出了一种状态空间分配方法。我们设计了包含两个新步骤的广义BPF算法:(i)使用此估计值作为确定适当分区的相似性矩阵的状态矢量相关矩阵的估计。另外,对最大簇大小施加了约束,以防止SC提供太大的块。我们表明,所提出的方法可以在相同的块中汇集在一起​​,最相关的状态变量,同时成功地逃脱了维数的诅咒。

The particle filter (PF) is a powerful inference tool widely used to estimate the filtering distribution in non-linear and/or non-Gaussian problems. To overcome the curse of dimensionality of PF, the block PF (BPF) inserts a blocking step to partition the state space into several subspaces or blocks of smaller dimension so that the correction and resampling steps can be performed independently on each subspace. Using blocks of small size reduces the variance of the filtering distribution estimate, but in turn the correlation between blocks is broken and a bias is introduced. When the dependence relationships between state variables are unknown, it is not obvious to decide how to split the state space into blocks and a significant error overhead may arise from a poor choice of partitioning. In this paper, we formulate the partitioning problem in the BPF as a clustering problem and we propose a state space partitioning method based on spectral clustering (SC). We design a generalized BPF algorithm that contains two new steps: (i) estimation of the state vector correlation matrix from predicted particles, (ii) SC using this estimate as the similarity matrix to determine an appropriate partition. In addition, a constraint is imposed on the maximal cluster size to prevent SC from providing too large blocks. We show that the proposed method can bring together in the same blocks the most correlated state variables while successfully escaping the curse of dimensionality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源