论文标题
Cayley图中的零3流程无处可去于可超过的组
Nowhere-zero 3-flows in Cayley graphs on supersolvable groups
论文作者
论文摘要
Tutte的3流猜想断言,每$ 4 $ - 连接的图形都允许一个零零$ 3 $ - 流。我们证明,对于任何具有非循环的Sylow $ 2 $ -subgroup和每个Cayley Valency的cayley tagrency的Cayley图,每个cayley的价值都至少四个,并且在任何派生子组为平方订单的任何组上至少四个。
Tutte's 3-flow conjecture asserts that every $4$-edge-connected graph admits a nowhere-zero $3$-flow. We prove that this conjecture is true for every Cayley graph of valency at least four on any supersolvable group with a noncyclic Sylow $2$-subgroup and every Cayley graph of valency at least four on any group whose derived subgroup is of square-free order.