论文标题
null Hyperfaces作为Lorentz-Minkowski空间中的波浪前线
Null hypersurfaces as wave fronts in Lorentz-Minkowski space
论文作者
论文摘要
在本文中,我们表明````$ l $ complete null hypersurfaces''(即按整个轻度线条以整个轻度线形成的统治性超曲面),因为$(n+1)$ - dimensiality lorentz-minkowski空间在$ n $ n $ n $ n $ -dimemensienty oclidean euclidean consoncy to the $(n+1)$ - 尺寸lorentz-minkowski空间。作为一个应用程序,我们表明,大多数零波前端可以实现为某些$ l $ complete Null Wave Fronts的限制。此外,我们确定$ l $ complete null Wave Fronts的奇异集很紧凑。
In this paper, we show that ``$L$-complete null hypersurfaces'' (i.e. ruled hypersurfaces foliated by entirety of light-like lines) as wave fronts in the $(n+1)$-dimensional Lorentz-Minkowski space are canonically induced by hypersurfaces in the $n$-dimensional Euclidean space. As an application, we show that most of null wave fronts can be realized as restrictions of certain $L$-complete null wave fronts. Moreover, we determine $L$-complete null wave fronts whose singular sets are compact.