论文标题
磁性材料的自旋依赖图神经网络潜力
Spin-Dependent Graph Neural Network Potential for Magnetic Materials
论文作者
论文摘要
机器学习间原子电位的发展极大地有助于分子和晶体的模拟准确性。但是,为磁性力矩和结构性自由度造成的磁系统创建原子间潜力仍然是一个挑战。这项工作引入了Spingnn,这是一种使用旋转依赖性的原子质潜在方法,该方法采用图形神经网络(GNN)来描述磁系统。 Spingnn由两种类型的边缘GNN组成:Heisenberg Edge Gnn(Hegnn)和旋转距离边缘GNN(SEGNN)。 Hegnn的量身定制以捕获Heisenberg型自旋晶格相互作用,而SEGNN准确地模拟了多体和高阶自旋晶格耦合。 Spingnn的有效性是通过其在拟合高阶旋转汉密尔顿和两个复杂的自旋晶体汉密尔顿人方面的出色精度来证明的。此外,它成功地模拟了BifeO3中微妙的自旋晶格耦合,并执行了大规模的自旋晶格动力学模拟,以高精度预测其抗磁基地基态,磁相变和域壁能量景观。我们的研究扩大了图神经网络电位对磁系统的范围,这是对此类系统进行大规模自旋晶格动态模拟的基础。
The development of machine learning interatomic potentials has immensely contributed to the accuracy of simulations of molecules and crystals. However, creating interatomic potentials for magnetic systems that account for both magnetic moments and structural degrees of freedom remains a challenge. This work introduces SpinGNN, a spin-dependent interatomic potential approach that employs the graph neural network (GNN) to describe magnetic systems. SpinGNN consists of two types of edge GNNs: Heisenberg edge GNN (HEGNN) and spin-distance edge GNN (SEGNN). HEGNN is tailored to capture Heisenberg-type spin-lattice interactions, while SEGNN accurately models multi-body and high-order spin-lattice coupling. The effectiveness of SpinGNN is demonstrated by its exceptional precision in fitting a high-order spin Hamiltonian and two complex spin-lattice Hamiltonians with great precision. Furthermore, it successfully models the subtle spin-lattice coupling in BiFeO3 and performs large-scale spin-lattice dynamics simulations, predicting its antiferromagnetic ground state, magnetic phase transition, and domain wall energy landscape with high accuracy. Our study broadens the scope of graph neural network potentials to magnetic systems, serving as a foundation for carrying out large-scale spin-lattice dynamic simulations of such systems.