论文标题
固定prandtl方程中的反转
Reversal in the Stationary Prandtl Equations
论文作者
论文摘要
我们证明了一组开放数据集的存在,该数据表现出\ textIt {reversal}和\ textit {recirculation {recirculation}的固定prandtl方程(由于问题的同时向前和后退原因,数据在适当定义的产品空间中获取数据)。逆转描述了戈德斯坦奇异性以外的解决方案的开发,其特征是(时空)区域的存在,其中$ u> 0 $和$ u <0 $。关于该系统在切线方向上的演变的经典观点完全使戈德斯坦的奇异性完全分解。相反,为了描述开发,我们将问题视为\ textIt {混合型,非本地,quasilinear,QuasilIrinear,自由边界}问题,整个曲线$ \ {u = 0 \} $。在精心挑选的非线性和自相似坐标系中,我们提取一个用于散装解决方案的耦合系统以及描述自由边界的几个调制变量。我们的工作结合并介绍了混合型问题,自由边缘问题,调制理论,谐波分析和光谱理论的技术。作为副产品,我们在PrandTL方程中获得了几种新的取消,并开发了针对带有通风型核的单数积分运算符量身定制的几个新估计值。
We demonstrate the existence of an open set of data which exhibits \textit{reversal} and \textit{recirculation} for the stationary Prandtl equations (data is taken in an appropriately defined product space due to the simultaneous forward and backward causality in the problem). Reversal describes the development of the solution beyond the Goldstein singularity, and is characterized by the presence of (spatio-temporal) regions in which $u > 0$ and $u < 0$. The classical point of view of regarding the system as an evolution in the tangential direction completely breaks down past the Goldstein singularity. Instead, to describe the development, we view the problem as a \textit{mixed-type, non-local, quasilinear, free-boundary} problem across the curve $\{ u = 0 \}$. In a well-chosen nonlinear and self-similar coordinate system, we extract a coupled system for the bulk solution and several modulation variables describing the free boundary. Our work combines and introduces techniques from mixed-type problems, free-boundary problems, modulation theory, harmonic analysis, and spectral theory. As a byproduct, we obtain several new cancellations in the Prandtl equations, and develop several new estimates tailored to singular integral operators with Airy type kernels.