论文标题

DROIDRL:加固学习驱动的Android恶意软件检测功能选择

DroidRL: Reinforcement Learning Driven Feature Selection for Android Malware Detection

论文作者

Wu, Yinwei, Li, Meijin, Wang, Junfeng, Fang, Zhiyang, Zeng, Qi, Yang, Tao, Cheng, Luyu

论文摘要

由于Android的完全开源性质,恶意软件攻击的可利用脆弱性正在增加。机器学习近年来导致Android恶意软件检测的巨大发展,通常在分类阶段应用。由于在某些基于传统排名的特征选择算法中忽略了功能之间的相关性,因此应用基于包装器的功能选择模型是一个值得研究的主题。尽管考虑了功能之间的相关性,但基于包装器的方法在处理大量Android功能时探索所有可能的有效特征子集的耗时。为了减少基于包装器的功能选择的计算费用,提出了一个名为droidrl的框架。该框架部署了DDQN算法以获得可用于有效恶意软件分类的功能子集。为了在较大范围内选择有效的特征子集,在模型训练阶段应用了勘探探索策略。复发性神经网络(RNN)被用作DDQN的决策网络,以使该框架可以顺序选择特征。将单词嵌入用于功能表示形式,以增强框架找到特征语义相关性的能力。该框架的特征选择在没有任何人类干预的情况下表现出高性能,并且可以移植到其他特征选择任务中,并进行了较小的更改。当将随机森林用作Droidrl的分类器时,实验结果显示出显着效果,该分类器的精度达到95.6%,仅选择了24个功能。

Due to the completely open-source nature of Android, the exploitable vulnerability of malware attacks is increasing. Machine learning, leading to a great evolution in Android malware detection in recent years, is typically applied in the classification phase. Since the correlation between features is ignored in some traditional ranking-based feature selection algorithms, applying wrapper-based feature selection models is a topic worth investigating. Though considering the correlation between features, wrapper-based approaches are time-consuming for exploring all possible valid feature subsets when processing a large number of Android features. To reduce the computational expense of wrapper-based feature selection, a framework named DroidRL is proposed. The framework deploys DDQN algorithm to obtain a subset of features which can be used for effective malware classification. To select a valid subset of features over a larger range, the exploration-exploitation policy is applied in the model training phase. The recurrent neural network (RNN) is used as the decision network of DDQN to give the framework the ability to sequentially select features. Word embedding is applied for feature representation to enhance the framework's ability to find the semantic relevance of features. The framework's feature selection exhibits high performance without any human intervention and can be ported to other feature selection tasks with minor changes. The experiment results show a significant effect when using the Random Forest as DroidRL's classifier, which reaches 95.6% accuracy with only 24 features selected.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源