论文标题
有限掺杂处的Mott量子关键点
Mott Quantum Critical Points at finite doping
论文作者
论文摘要
密切相关的材料通常会经历Mott Metal-Metal-Metultrator转变,这是一阶的,是压力等控制参数的函数。掺杂时,发现具有竞争不稳定性的丰富相图。然而,相互作用驱动的莫特过渡与有限兴奋剂行为之间的概念联系缺乏与关键现象理论的明显联系。在一阶Mott转换的原型情况下,与均匀系统的状态方程相关的表面是“折叠”的,因此在一系列参数中,存在稳定的金属和绝缘阶段,并通过不稳定的金属分支连接。在这里,我们表明,调整化学电位逐渐展开状态的零温度方程。在一般条件下,我们发现莫特过渡演变成两种金属之间的一阶跃迁,与有限掺杂时以量子临界点(QCP)结尾的相分离区域相关。在这里,这种情况显示了解决与基于铁的超导体相关的简单多轨道哈伯德模型,但是它的起源 - 原子基态多重尺度的分裂,在这里,在这里,洪德的耦合 - 更为笼统。与铜酸超导体的强烈类比是追溯的。
Strongly correlated materials often undergo a Mott metal-insulator transition, which is tipically first-order, as a function of control parameters like pressure. Upon doping, rich phase diagrams with competing instabilities are found. Yet, the conceptual link between the interaction-driven Mott transition and the finite-doping behavior lacks a clear connection with the theory of critical phenomena. In a prototypical case of a first-order Mott transition the surface associated with the equation of state for the homogeneous system is "folded" so that in a range of parameters stable metallic and insulating phases exist and are connected by an unstable metallic branch. Here we show that tuning the chemical potential the zero-temperature equation of state gradually unfolds. Under general conditions, we find that the Mott transition evolves into a first-order transition between two metals, associated to a phase separation region ending in a quantum critical point (QCP) at finite doping. This scenario is here demonstrated solving a simple multi-orbital Hubbard model relevant for the Iron-based superconductors, but its origin - the splitting of the atomic ground state multiplet by a small energy scale, here Hund's coupling - is much more general. A strong analogy with cuprate superconductors is traced.